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Answer question 1 and any five from the rest.

(1)

(2)

(3)

(4)

Prove the following statements.

(a) Similar matrices have the same eigen values.

(b) A matrix is nilpotent if and only if all eigenvalues are zeroes.

(c) Every matrix A such that A% = A is similar to a diagonal matrix.

(d) Determinant of a hermitian matrix is real.

(e) Every conjugacy class in the unitary group contains a diagonal matrix.

5+5+5+5+5

0 0
. -1 -1 0 0
Let A be the matrix 9 _9 9 1
1 1 -1 0
(a) Show that the characteristic polynomial for A is 2?(x — 1)2.
(b) What is the minimal polynomial for A?

(c) Is A diagonalizable over C? Give reasons.
9+5+5

Let V be a finite dimensional vector space over F and let T be a linear
operator on V. Then show that T is triangularizable if and only if the
minimal polynomial for 7" is a product of linear polynomials over F.
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(a) Let T be a linear operator on a n dimensional vectror space V, and
suppose that T has n distinct eigenvalues. Prove that T is diagonalizable.
(b)Let T be a linear operator on a space of dimension 2. Assume that the
characteristic polynomial of T is (x — a)?. Prove that there is a basis of V/
. 1
such that the matrix of 7" has one of the two forms [ 8 a ] , { 8 2 ] .
847

a) Prove that an n x n matrix A over the real numbers is a positive definite
symmetric matrix if and only if A = P'P for some P € GL,(R).
b) Let V be a real vector space of finite dimension n with positive definite
symmetric bilinear form (,) . Show that the group of isometries of (V, (,))
(linear operators T': V. — V such that (T'x,Ty) = (z,y) forall z,y € V')
is isomorphic to the group O, (R) of invertible n x n real matrices P such
that PP" = I,,.

10+5

State and prove Sylvester’s law for a symmetric form on a finite dimensional
real vector space.
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(7) (a) Prove that if T is a hermitian operator on a hermitian vector space V|
then there is an orthonormal basis of V' consisting of eigen vectors of T'.
(b) State the matrix analogue of the above statement and show that the
two are equivalent.
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(8) (a) State spectral theorem for normal matrices.
(b) Let A be a normal matrix. Prove that A is hermitian if and only if all
eigen values of A are real.
(c¢) Let A be a normal matrix. Prove that A is unitary if and only if every
eigen value has absolute value 1.
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